浅议建筑节能环保材料及应用(新版多篇)

来源:范文范 2.4W

浅议建筑节能环保材料及应用(新版多篇)

应用材料范文 篇一

关键词:航空复合材料;应用情况

中图分类号:TB33文献标识码: A 文章编号:

1、引言

近百年来航空工业与材料工业一直在相互推动下发展。继铝、钢、钛等金属材料后,在新一代飞机中复合材料已成为四大航空材料之一。目前越来越多的飞机零部件开始采用复合材料,从座椅、肋板、内部装饰、舷窗、引擎罩盖,到机翼、机身和整流罩等,复合材料成为现代飞机制造的重要材料。

航空工业总是引领先进材料的技术开发,在世界范围内,以碳纤维为增强体的先进复合材料诞生于20世纪60年代末,大型飞机于20世纪70年代初就开始了先进复合材料应用。复合材料革命的发生是因其产品的非常特性以及近年技术开发的结果。在飞机设计中,从金属材料转向复合材料可以减重10~40%,结构成本降低15~30%。

2、航空复合材料应用发展总体情况分析

国外目前复合材料在军机、直升机、无人机上的用量早已达到或超过50%;现今在大型客机上的用量也超过了50%。在通用航空领域许多小飞机的复合材料用量更高,甚至达到了结构重量的90%。可以看出复合材料的应用已经成为民用飞机实现其先进性、经济性和舒适性的重要技术途径之一。

在过去几十年内,民机复合材料用量正显著增加。上世纪七十年代及八十年代初,雷达罩、机身整流罩、内装饰结构、控制面板等应用了复合材料,占飞机结构重量的1~3%。随着复合材料工业的成熟以及成本降低,新一代A320、波音777等飞机复合材料用量占结构重量的10~15%。新研制出的A380约结构重量的1/4是复合材料,单机复合材料有30吨。复合材料占结构重量50%的波音787飞机更加具有革命性,其典型特征是全复合材料的机身,并在机翼、短舱及内装饰应用了大量复合材料。受波音787的推动,A350XWB复合材料将增加到53%;A400M军用运输机复合材料约占结构件重量40%。

此外,空客及波音公司都将在窄机身飞机上明显扩大复合材料的应用,这些飞机将在几十年内最终取代目前广泛使用的波音737及A320飞机。因窄机身飞机目前占全球运输机队的70%,这将急剧加速对航空供应链的冲击。

3、波音民用飞机公司复合材料应用情况

波音公司研制的B787飞机,提高燃油效率20%(其中12%的贡献来自于大量采用复合材料结构),它是世界上第一个采用复合材料机翼和机身的大型商用客机,其应用广度远远超过B777和A380,大型机翼整体壁板、机身等部件大量采用自动铺放制造技术。波音认为采用复合材料除减重外,还可提供更好的耐久性,降低使用维护要求,增加未来发展的潜力和空间。

B787飞机复合材料占50%左右,考虑到复合材料密度仅为1.6g/cm3,故全机主要结构均采用复合材料制成,从外表面看,除机翼、尾翼前缘、发动机挂架外几乎看不到金属。主要应用部位包括机翼、机身、垂尾、平尾、发房、地板梁、部分舱门、整流罩等,甚至还包括了起落架后撑杆、发动机机匣、叶片等部位。应该特别指出这是世界上第一个采用复合材料机翼和机身的大型客机,为世界之最,世界公认这是复合材料发展史上一个重要的里程碑。

B787的主要用材体系为T800S/3900-2,纤维为日本东丽公司生产,树脂为改性的韧性环氧,177℃固化,已基本在B777上完成使用和验证波音认为复合材料除减重外,还可提供更好的耐久性、耐腐蚀性,可降低使用维护要求和成本,较B767降低成本30%,未来发展的潜力和空间大大增加。

4、空客飞机公司航空复合材料应用情况

空客公司一直注重复合材料的研究与应用,空客系列飞机复合材料所占结构重量比例不断上升。主要应用部位包括中央翼、外翼、垂尾、平尾、机身、地板梁、后承压框等,大量采用自动铺放制造技术。

A380约25%由复合材料制造,其中22%由各种不同的增强型塑料复合材料制成,大部分是Hexcel公司和Cytec公司提供的碳纤维增强环氧树脂。其中,减速板、垂直和水平稳定器(用作油箱)、方向舵、升降舵、副翼、襟翼扰流板、起落架舱门、整流罩、垂尾翼盒、方向舵、升降舵、上层客舱地板梁、后密封隔框、后压力舱、后机身、水平尾翼和副翼均采用复合材料制造。

A380是第一个将复合材料用于中央翼盒的大型民机,该翼盒总重8.8t,其中采用复合材料5.3t,实现减重1.5t;板厚可达45mm,重要连接点处可达160mm,连接钉直径可达2.54cm,可承受高载。机身后承压框6.2m×5.5m,上有泡沫塑料充填的加筋,用RFI(树脂膜熔塑)技术成形,号称世界上最大的RFI整体成形构件。机身地板梁为I型梁,两端固支,受载很大,由日本JAMCO公司制造,采用了创新的拉挤技术,拉进去的是预浸料而不是纤维。A380上机身使用多块Glare层板,面积达470m2以上,约占全机结构总重的3%~4%,与相应的铝合金板比可减重25%~30%,其疲劳寿命则可提高10~15倍。

目前,空客公司已启动A350XWB项目,为了同B787进行竞争,复合材料的用量已达到了52%,具体部件包括机翼、平尾、垂尾以及机身的各段,其中机翼、平尾、垂尾为全复合材料结构,机身为混杂结构。由于在机身上使用了复合材料,机身段数目减少为3个,生产将采用自动铺放技术。

A350XWB机翼有“王冠上的珍珠”之称,是单通道客机机翼中最大的复合材料机翼,面积达到442m2,翼展64m。A350XWB机翼80%为复合材料,选材是在ATR支线飞机以及A400M 军用运输机基础上进行的。ATR及A400M的复合材料机翼外翼上装有发动机吊挂,A350XWB机翼上还安装了承受起落架的接头。A350XWB 吸收了A380大的平尾以及中央翼盒的选材经验,在机翼壁板厚度尺寸上还吸取了A320、A330、A340及A380的平尾壁板厚度经验,机翼表面要能承受登机梯的偶然冲击损伤。

A350XWB机翼上所有大结构件(蒙皮、桁条、梁)以及活动面均为复合材料,翼肋可能是铝或铝锂合金:32m长的前缘50%为碳纤维复合材料。A350XWB中央翼盒采用A340-500/600的结构布局,复合材料的应用则采用A380的模式。

应用材料范文 篇二

关键词:建筑节能;相变材料;应用意义

1相变材料分类

相变材料可以按照成份分类,主要为:无机相变材料、有机相变材料、复合相变材料等,其中还包括结晶水合盐类。相变材料的应用范围较广,具有一定的导热优势,可以储存较多热量,在采购中,可以减少采购成本,提升建筑工程施工经济效益,但是,相变材料存在过冷度大等缺点。图1相变材料中的有机材料主要包括:石蜡相变、羧酸等,此类材料的优势就是性能稳定、不容易被腐蚀、相分离等,但是,建筑施工人员在应用有机相变材料的时候,会受其熔点低、容易氧化等缺点的影响,无法提升建筑施工质量。为了可以减少有机箱变材料的各类问题,建筑施工人员可以采购复合材料,例如:有机材料混合物等,可以拓宽材料的应用范围。如果在施工中出现相变潜热下降的现象,将会导致出现变性现象,因此,建筑施工技术人员在实际工作中,必须要应用二元或是多元复合材料,提升建筑节能施工可靠性。目前,我国技术人员开始研制复合相变材料,积极开发新型材料,为建筑节能施工提供帮助。主要包括以下两种:其一,技术人员开发出脂肪酸与多元醇等相变混合材料,将几种原材料混合在一起,可以最大程度降低相变材料应用成本,并发挥复合材料的应用作用。其二,相关技术人员开发出不同多原材料混合相变原材料,形成共融的机质,通过对相变温度的调节,开发出各类具备相变优势的复合材料,提升建筑施工质量。

2相变材料制备措施

在建筑施工之前,需要制备各类相变材料,将其与建筑原材料混合在一起,制备成为复合型的相变储能机制,有利于储存各类能源,提升节能性。具体措施包括以下几点:第一,科学应用浸泡技术。此类技术的应用,需要技术人员利用浸泡方式,将相变材料浸入多孔的建筑原材料基体中,例如:石膏墙板建筑原材料、水泥混凝土建筑原材料等,此类方式的优点就是制作方式渐变,有利于将传统的建筑原材料转变成为相变储能建筑材料。但是,在实际使用中,还会出现原材料浸泡不均匀的现象,无法发挥技术的节能作用。第二,合理应用能量微球方式。技术人员需要利用微胶囊技术开展相关工作,或是通过纳米复合技术对相变材料进行处理,使其成为能量微球,然后将能量微球与建筑原材料基体融合在一起,制作成为复合型的相变建筑储能原材料,此类方式从制备开始到最后,都需要技术人员对其进行全面的控制,可以制备出复合型的原材料,例如:制备界面聚合原材料,将石膏与相变微胶囊结合在一起,使其成为储存能源的建筑材料,提升节能效果。同时,技术人员可以利用溶胶与凝胶等技术方式制备建筑相变原材料,或是利用二氧化硅纳米复合技术制备建筑原材料,以此提高相变材料的应用可靠性,减少其中存在的能量微球应用问题,正确隔离相变材料与建筑基体,通过化学性能起到保护作用。另外,应用相变材料有利于对建筑原材料进行固态化处理,规避各类破坏性问题,提升建筑材料的应用价值。第三,适当应用直接混合方式。技术人员在应用直接混合方式的时候,可以将相变材料与建筑基体直接融合在一起,例如:将相变材料与硅石放置在一起,在此期间,必须要保证硅石为半流动性的粉状,同时,技术人员要将其与建筑材料基体融合在一起。再如:在制作建筑石膏板原材料的时候,技术人员可以利用94%的正十八烷与4%的正十六烷融合在一起,使其成为质量符合相关标准的相变材料,同时,技术人员还要利用能量微球制作方式对其进行处理,以便于相变材料与建筑石膏板原材料混合在一起,保证石膏板可以从传统的原材料转变成为变相能源储存类型的材料。另外,技术人员需要将变相材料与灰泥融合在一起,保证可以制备出具有储存能量优势的砂浆,提升建筑节能性。目前,我国建筑行业技术人员在实际研究与开发中,已经得到良好的成效,并将相变材料推广到建筑工程施工中,可以提升建筑材料的节能效果,并制作出各类形状的建筑构件,满足现代化工程施工不同需求,加快建筑节能施工的发展速度。

3建筑节能中相变材料应用措施

在建筑节能施工中,建筑技术人员利用相变材料开展施工工作,可以转变传统建筑方式,打破传统技术模型的局限性,提升建筑节能施工有效性,具体应用主要分为以下几类:第一,建筑技术人员将相变材料与建筑围护材料融合在一起,制作成为相变储蓄功能的围护结构,在实际应用中,可以对室内温度进行有效的调控,在冬季中,可以储存较多热力能源。在夏季中,可以减少室内外建筑物温度差,散发较多的热力能源,延缓室内气温高峰问题,提升建筑物的室内温度调节能力,甚至可以改善室内热环境,减少空调等机械设备的使用,全面优化室内环境。例如:建筑施工技术人员将石膏板与变相微球混合在一起,加入一些具有储存能量优势的建筑墙板原材料,可以转变传统内壁材料的应用方式,减少室内温度波动问题,为人们营造舒适的室内环境,同时,此类建筑节能材料的应用,有利于控制建筑施工成本,提高施工企业的经济效益[1]。第二,建筑技术人员将相变材料与大体积混凝土建筑原材料融合在一起,制作成为具有温度控制性能的混凝土结构。此类建筑材料的应用,可以全面控制混凝土的温度,减少结构内外温度差,避免出现混凝土内部温度迅速提升问题,延缓混凝土的温度高峰时间。此类建筑方式的应用,可以减少施工技术人员在大体积混凝土中冷却管的设置,全面解决混凝土内外温度差的裂缝问题,提升建筑施工质量。同时,还能改变建筑原材料的使用性能,延长其使用寿命,简化施工流程,降低施工成本,有利于控制建筑工程造价,节约经济支出。当前,我国建筑企业在应用相变材料制作大体积混凝土结构的时候,可以依据各类理论知识开展相关技术工作,提升混凝土温度控制有效性与可靠性,达到建筑节能目的[2]。第三,建筑技术人员将相变材料应用与砖材料结合,就是在烧砖的时候,将相变材料填入多孔烧砖孔穴中,就可以制备成为具有储能优势的砖材料。此类制备方式的流程较为简单,容易调节建筑原材料热性能,但是,在实际制备中,还存在强度不足等缺陷,相变砖材料的填充位置直接影响使用性能,若不能保证填充均匀性,将出现难以解决的质量问题。在现代化建筑技术研究中,技术人员针对此类问题提出意见,要求制备相变砖材料中,可以将烷烃基填充在转孔穴中,然后对其进行全面的制备处理,以保证相变砖材料的应用质量符合相关规定[3]。第四,建筑技术人员需要将相变材料融入到陶瓷建筑材料中,选择石蜡材料作为中心系统,利用水性环氧树脂开展陶瓷壁的制备工作,有利于提升陶瓷材料的储能效果,减少传统陶瓷材料的应用问题

4建筑节能中相变材料应用意义分析

在建筑节能施工中,施工技术人员应用相变材料,具有明显的应用优势,有利于节约建筑能源,控制建筑成本,减少施工中的经济支出,提高建筑企业经济效益。建筑节能中应用相变材料,可以有效储存热力能源,有利于对建筑温度进行控制,可以根据建筑内部环境的温度变化情况,发挥吸热或是放热功能。建筑节能工程中技术人员应用相变材料,具有无毒无害的优势,有利于改善生态环境,并延长建筑材料使用寿命,提升相变稳定性,简化各类建筑施工流程。但是,目前我国在研制相变材料的过程中,还没有开发出更多建筑原材料,难以满足建筑节能施工要求,部分技术人员过于重视相变潜热性能,忽视原材料的选择,无法在工程施工中全面开展各类研究工作,甚至会出现一些难以解决的问题。因此,我国建筑技术人员必须要根据建筑节能工程施工要求,全面开发各类相变材料。建筑节能工程施工技术人员在应用相变材料的时候,必须要重视大体积混凝土施工材料的制备,利用先进技术对其进行处理,在应用相变材料制备大体积混凝土之后,有利于延长混凝土的使用寿命,减少混凝土各类裂缝因素,避免出现原材料浪费的现象,提升建筑工程施工合理性与有效性,减少其中存在的问题。在未来发展中,建筑节能中相变材料的应用,会向着节能方向发展,除了可以储存能量之外,还能提升建筑环境的舒适度,减少围护结构对于建筑外部环境的刺激,转变传统建筑材料的应用性能,以此提高建筑节能工程的施工质量。在人们对节能施工技术的认知日益加深的情况下,相变材料会广泛应用在建筑施工中,利用相变储能方式改善建筑材料的应用性能,提升建筑工程的施工质量与节能性。

5结语

在建筑节能工程施工中,技术人员需要合理应用相变材料,并利用先进制备方式对其进行处理,保证可以减少其中存在的各类能源消耗问题,降低建筑工程的施工成本,并增强材料能量储存能力,为人们营造舒适的空间。

参考文献

[1]刘建青.相变材料发展及在建筑节能工程中的应用[J].福建质量管理,2016(2).

[2]倪海洋,朱孝钦,胡劲,等.相变材料在建筑节能中的研究及应用[J].材料导报,2014,28(21):100-104.

应用材料范文 篇三

关键词:墙面装饰;材料;应用

室内装饰材料作为室内设计的实现因素,起到了至关重要的作用。它包含了建筑内部的墙面、顶棚、柱面、地面等材料。我们都知道,人的视平线在165cm左右,所以墙面的装饰材料在表现室内效果,突出室内风格方面,起到了承上启下的作用,同时还兼有绝热、防潮、防火、吸声、隔音等多种功能,起着保护建筑物主体结构、延长期使用寿命以及满足某些特殊要求的作用,所以墙面装饰材料越来越受关注。墙面装饰材料大致可以分为:涂料类、壁纸墙布类、人造装饰板类、石材类、陶瓷类、玻璃类和金属类等。

一 涂料类

涂料类与其它饰面材料相比,具有重量轻、色彩鲜明、附着力强、施工简便、质感丰富以及耐水、耐污、耐老化等许多优点。可用于装饰一般饿住宅、商店、学校、库房办公楼等内外墙装饰。其主要功能有装饰作用美化建筑物。建筑涂料涂敷与建筑物表面形成连续的薄膜,厚度适中,有一定厚度和韧性,使其具有耐磨、耐候、耐老化侵蚀以及抗污染等功能。可以提高建筑物的使用寿命。建筑涂料能提高室内亮度,还可以起到标志作用和调节室内色彩的作用。

二 壁纸墙布类

墙面装饰织物是目前我国使用最为广泛的墙面装饰材料。墙面装饰以多变的图案、丰富的色泽、仿制传统材料的外观、以独特的柔软质地产生的特殊效果柔化空间美化环境深受用户的喜爱。这些壁纸和墙布的基层材料有全塑料的、布基的、石棉纤维基层的和玻璃纤维基层的等等其功能为吸声、隔热、防菌、放火、防霉、耐水良好的装饰效果。在宾馆、住宅、办公楼、舞厅、影剧院等有装饰要求的室内墙面、顶棚应用较为普遍。

塑料壁纸施工要点:1墙面平整、干净无污垢及剥落。2墙面如有裂缝、空隙、凹凸等缺陷应涂刷腻子抹平。3黏结剂用聚乙烯醇缩甲醛、聚醋酸乙烯乳胶、粉末壁纸胶等。装饰壁纸除上述塑料壁纸外还有预涂胶塑料壁纸无底层塑料壁纸可剥离壁纸分层墙纸等。

三 人造装饰板类

木材轻质、易与加工,有较高的弹性和韧性热容量大装饰性好。在室内装饰方面木材美丽的天然花纹给人以淳朴、亲切的质感,表现出朴实无华的传统自然美,从而获得独特的装饰效果。但木材也有缺陷,如内部结构不均匀,导致各向异性易随周围湿度变化而改变含水量,引起膨胀或收缩易腐蚀及虫蛀易燃烧天然瑕疵较多等。

科学技术的飞速发展,促进了建筑装潢材料科学的进步。目前新型建筑饰面材料种类繁多日新月异,但由于木材具有其独特的优良特性,木质饰面给人以一种独特的优美感觉。这是其它材料无法与其相比的,因此木材在建筑装饰领域中始终保持着重要地位。

主要是由于木材具有以下的特性:1轻质,这是木材最显著、最重要的特性。一般情况下木材的表观密度为550kg/m3,但其顺纹抗压强度和抗弯强度均在100Mpa左右,因此木材的比强度很高,属于轻质高强材料,具有很高的使用价值。2木材独特的结构。

四 石材类

建筑石材是指具有可锯切抛光等加工性,能在建筑物上用于建筑装饰的部分产品。包括天然石材和人造石材两类。天然装饰石材指天然大理石和天然花岗岩。天然石材是从天然岩体中开采出来年并加工成块状或板状材料的总称。

天然石材的主要优点如下:1蕴藏丰富分布很广便于就地取材。2石材结构致密抗压强度高。3耐水性、耐磨性、耐久性好。4装饰性好石材具有纹理自然、质感厚重、庄严雄伟的艺术效果。天然石材的主要缺点是质地坚硬、加工困难自重大、开采运输不方便个别石材可能含有放射性需要进行必要的检测。天然石瓷主要用于宾馆、饭店、酒楼、展厅、博物馆、办公楼、会议室、大厦等高级建筑的室内墙壁。

五 陶瓷类

建筑陶瓷是指建筑物室内外装饰用较高级的烧土制品。釉面砖是陶瓷建筑材料中较为常用的一种过去习惯称为“瓷砖”。釉面砖具有很多优良性能它色泽柔和典雅热稳定性能好防火强度高抗冻、防潮、耐酸碱绝缘、抗急冷急热并且易于清洗。主要用于厨房、浴室、卫生间、实验室、精密仪器车间等室内墙面。也可以用来砌筑水池卫生设施等。若经专门设计、彩绘、烧制而成的面砖可以镶拼成各式壁纸,具有独特的装饰效果。其装饰既清洁卫生又美观耐用并兼有绝热隔声的功能。

六 玻璃类

建筑玻璃的装饰性能很丰富,玻璃的装饰特性可划分成:玻璃的透光性、玻璃的透明性、玻璃的半透明性、玻璃的折射性、玻璃的反射性、玻璃的多色性、玻璃的光亮性、玻璃表面图案的多样性、玻璃形状多样性、玻璃安装结构的多样性。不仅如此玻璃的装饰性能是活性的、是动态的、是充满着生命活力的。它与日光辉映可使建筑物色彩斑斓、光彩照人。

七 金属类

金属材料用作建筑装饰材料具有轻盈、高雅、光彩夺目且具有强度等优点。金属材料的最大特点是色泽效果突出。铝、不锈钢、较具时代感钢材较华丽、优雅其中古铜色钢材较古典而铁则古朴厚重。金属材料还具有韧大、耐久性好、保养维护容易等特点。但金属材料造价高、硬度大、施工有一定难度。所以使用金属材料是一定要了解所用材料的规格尺寸尽量减少接缝、接点和接头以免影响外观效果。同时还要了解建筑装饰用金属材料的形态及表面处理方式。从未来建筑业的发展趋势上看应尽量减少材料的使用质量缩短施工工期构件生产标准化同时有利于再生循环利用在这些方面金属材料均优于混凝土材料。金属材料在建筑装饰过程中从使用性质与要求上可以分为两种情况:一为结构承重材料另一为饰面材料。结构承重材料较为厚重起支撑和固定作用。而饰面材料一般较薄且易于加工处理但表面精度要求较高。

综上所述,墙面装饰材料的重要性与必要性,我们要秉承绿色、环保、人性化的设计理念,将墙面装饰材料利用的更加合理。

应用材料范文 篇四

关键词:可降解材料;光降解材料;生物降解材料

中图分类号:TQ464 文献标识码:A 文章编号:1671-2064(2017)07-0210-02

由于传统塑料材料的机械强度与韧性优良,传统塑料材料被广泛应用于包装材料,但是对石油基材料的过度使用,导致一次性消耗的自然资源过多,这使环境恶化。处理石油基包装材料的主要方法――填埋、焚烧造成了对居民的困扰。随着人们环保意识的不断加强,可降解材料应运而生,针对资源短缺、环境污染的问题,可降解材料的特点是原料绿色无污染,降解之后的产物对环境影响污染较小,甚至无污染。

1 可降解材料的概述

可降解材料是在生产过程中加入添加剂,使其本身在一定时间内能维持普通塑料的正常功能,超过一定时间或被废弃后,在光或微生物或其他因素的作用下,进行自身降解而后消失的材料。可降解材料可以减少一次性的难降解塑料在焚烧时对环境造成的危害,缓解填埋一次性难降解材料造成的人地矛盾。可降解材料从降解方式进行分类,可以分为光降解材料、生物降解材料以及其他降解材料。

1.1 光降解材料

光降解材料是一类添加光敏剂或引入特殊键的光敏基团,在太阳光的参与下,自身能进行对自身结构进行破坏的材料。

一类光降解材料的作用原理是聚合物在吸收太阳光后,光增敏基团被激活,使聚合物产生有双键等易于被降解的杂质,进一步发生氧化反应,最后降解为二氧化碳和水。例如:将一氧化碳为光敏单体与烯烃类单体聚合得到的如含有羰基结构的聚乙烯、聚氯乙烯等的光降解聚合物与同类树脂混合,可得到一种光降解材料;另一类光降解材料的原理是聚合物在生产时加入少量光敏剂,光敏剂在光照的条件下,促使聚合物产生自由基,加快自身的降解速率。光敏剂具有在光降解材料使用期内抗氧化的作用且能帮助维持光降解材料的正常使用,但在光降解材料使用期过后,又能促进其吸收光能进行自我分解的双重作用。含有光敏剂的光降解材料可分为含有过度的金属化合物如金属氧化物、有机金属化合物等的光降解材料和含有如蒽醌、嵌二萘等具有敏化烯烃塑料的多环芳香族碳氢化合物的光降解材料。

影响光降解的因素有聚合物结构(如含有羰基等)、光敏剂的添加、光波长、大气条件。光降解材料的缺陷有:第一,光降解的引发剂大多是对人体有害,因此不能应用于食品级,医疗级塑料;第二,大部分光降解材料不能被完全降解,这可能使其对环境的危害更大,第三,光降解材料应用范围较狭窄(地域狭窄),但可大面积应用于农田。

1.2 生物降解材料

由于光降解材料的局限,以及广泛的生物来源,目前的研究热点更多地放在生物降解材料上,相对于光降解材料,生物降解材料的原料来源更加绿色,降解的产物对环境的污染性也更加小。生物可降解材料是一类在酶或微生物的作用下,使维持自身结构的分子链逐渐断裂,形成对环境无害的小分子化合物的材料。

生物降解的方式有生物的物理、化学作用和酶的直接作用。根据来源的不同可以分为微生物降解型的生物材料、合成高分子型的生物降解材料、天然高分子型的生物降解材料。微生物降解材料是以有机物为碳源,微生物进行发酵转化为高分子聚酯,利用这种高分子聚酯制作为塑料的材料。合成高分子型的生物降解材料是利用化学方法合成在自然界中与原本存在的利于降解的高分子化合物。天然高分子型的生物降解材料是在合成时以淀粉、纤维素、木质素等多糖化合物为原料,在必要的条件下加入生物降解添加剂或经氧化、改性而加工制成的塑料。其中,淀粉基构成的可降解材料和PLA构成的可降解材料是当今研究的热点,PHB作为可降解材料也有较为广泛的应用。

淀粉通过植物光合作用而形成的,易得,降解后仍以二氧化碳和水的形式回归到生态环境中,是完全无污染的非常优良的生物降解材料。针对淀粉作为原料来源的淀粉基塑料是目前可降解材料领域研究的一大热点。淀粉基塑料研究的阶段主要有三个:第一阶段是少量淀粉加入到传统塑料中来达到可降解的目的;第二阶段是增加淀粉含量和淀粉与其中组分的连接;第三阶段是将淀粉经过处理,形成完全由淀粉组成的塑料。对淀粉进行改性,使其能够进行生物降解或能溶于水是研究的热点话题,如PVA与淀粉的混合物的研发。淀粉基塑料还有需降低成本、提高机械强度,以及提高给降解材料的降解周期控制等研究空间存在。目前研究最为成功的是将淀粉和高分子材料进行共混得到性能良好的可降解材料。

PLA(聚乳酸)是多糖经过降解发酵制得、纯化、聚合而成的环境友好型树脂。PLA是由乳酸分子在一定条件下脱水缩合而成。PLA在土壤掩埋条件下,在温度、氧气、弱碱性的共同作用下,6~12个月降解为乳酸,最终经微生物代谢,形成二氧化碳和水。PLA因其优良的生物相容性和机械强度,被广泛应用于新兴功能型医用高分子材料如医用手术缝合线、骨科用固定材料等。

PHB(聚β-羟基丁酸酯)是细菌体内碳源和能源的以颗粒状储存的酯类积累物。PHB对气体有阻挡性,能用于未添加抗氧化剂的食品的包装袋;PHB有良好的生物相容性,可用于手术缝合线、骨折固定材料;因PHB能够降解,可用于与农药或贵重药品的包埋处理。因为PHB用细菌发酵法进行生产,所以PHB的生产重点放在基因工程等技术。针对其易结晶、较脆、降解速度较慢的缺点,如何通过物理或化学的方法改善PHB的性能成为研究的重点对象。

1.3 其他降解材料

PVA(聚乙烯醇)因具有可控性――控制其醇解度和聚合度来把握PVA的溶解时间,成膜性、物理强度好――完全可以满足制做塑料的条件、毒性低、可达到100%降解、降解产物对环境无危害等优点,成为能够替代当今塑料的重点材料。PVA的原材料,PVA树脂分子链上的醋酸乙烯酯基体积较大,该基团的存在使得分子链上的羟基之间不易形成氢键,也一定程度上阻止了大分子之间的相互靠近,而PVA分子链上的羟基能和水分子之间形成氢键,这使PVA具有良好的水溶性,优异的水溶性有利于材料的降解。但是,单一的PVA材料机械强度难以满足使用要求。目前,淀粉/PVA共混体系能够满足塑料的正常使用,但是随着时间的加长,其力学性能下降得很快,说明其基本能满足可降解材料的条件。若要提高淀粉/PVA的耐水性,则可对淀粉/PVA共混体系进行甲基化改性、交联处理、加入纳米二氧化硅或加入柠檬酸和石油砂。但是PVA的生产工艺主要为流延法――首先将原料组分配好,后和水流延涂布到不锈钢辊上,再进行刮、剥离、收卷等工艺,因此,存在效率低和费用大的缺陷。PVA还需解决如何使高温水溶膜遇低温水完全不溶以及均匀及透明等问题。

光/生物双降解是一类加入一定量的光敏剂、促氧化剂等的在光和生物的共同作用下进行降解的聚烯烃材料。第一,有研究表明,生物降解以光降解为基础,对此,因其现已用于地膜、餐盒,这表现出了这种兼具两种降解方式的的技术先进性和实效性;第二,光/生物双降解材料降解较快,约60天能被完全降解。

2 发展前景及展望

大部分的可降解材料存在机械强度较小和韧性较弱以及降解的控制性较弱的缺c,因此,第一,可以多开发复合型可降解塑料,避免了单一原料造成的力学性能缺陷着重点放在开发应用范围广,原料易得、价格低廉的产品;第二,简化生产工艺扩大生产来促进可降解材料为我们实际生活所用。

3 结语

随着人们环保意识的增强和科技的飞速发展,可降解材料逐步取代石油基材料是必然趋势,如何充分发挥可降解材料的融传统包装材料的功能和特性和可降解,回归大自然的优点,成为各国研发的重点。

参考文献

[1]汪秀丽,张玉荣,王玉忠。淀粉基高分子材料的研究进展[J].高分子学报,2011(1):24-37.

应用材料范文 篇五

优点:

变频器直接控制电子机械制动器确保安全;

从PLC发出的模拟量和数字量很容易连接并监控;

用过热保护开关对电机进行过热保护;

使用转矩提升确保低速性能;

通过控制上升速度使操作平滑,确保材料在处理时不受损坏。

系统配置:

电机, 550W 220V 3相 异步电机;

控制系统, PLC;

驱动器, MICROMASTER MM420 550W 220V;

驱动控制接口,模拟输入控制、制动控制、电机过热保护。

600)h=600" border=0>

参数设置:

参数 参数值 意义

P1120  0.3 斜坡上升时间

P1121  0.3  斜坡下降时间

P0003  003 允许调整或设定所有的参数

P1082  100 最大输出频率

P2000  100 基准频率,用于串行链路或模拟I/O输入的满刻度频率设定值。

P0701  2 反转

P0702  1 正转

P0703  29  外部跳闸

P0731  52.3 输出继电器1制动控制。当P1216和P1217设置为0时,制动控制操作立即有效。

P1215  1  允许制动功能

P1216  0  制动延迟时间

P1217  0 制动结束延迟时间

浅议建筑节能环保材料及应用 篇六

关键词:建筑装饰;节能环保;应用

中图分类号:TE08 文献标识码:A

引言

建筑节能是贯彻国家可持续发展战略的重要组成部分,是发展国民经济、有效利用资源、改善建筑热环境、提高建筑功能与舒适水平、保护生态环境、实现我国宏观发展战略目标的需要。建筑节能是世界建筑发展的基本趋势,也是今后相当长时间内建筑科学技术一个新的增长点。本文就节能材料在建筑中的应用进行了分析。

一、建筑节能的基本概念

所谓的建筑节能,就是指在满足人们正常生活工作与学习需要的基础上,在设计建筑规划、生产建筑材料、施工及使用建筑物的过程中,采用新型的材料与新型的技术,提高照明与通风,采暖与制冷,管道和给排水系统的运行效率,将建筑维护结构的热工性能合理的进行设计,降低能量消耗,科学合理的利用资源,提高建筑的舒适性,达到节约能源的目的。节能环保绿色装饰材料在建筑装饰施工中应用,建筑节能是社会发展的需求,它有利于缓解能源紧缺问题;建筑节能是环境保护的需求,它有利于减轻大气污染现状;建筑节能是建筑业进步的需求,它有利于巩固企业市场地位。

二、新型节能环保材料在建筑工程中的应用

1、新型环保材料在室内墙壁装饰中的应用

室内墙壁装饰通常会选择低毒、低污染材料,如水性涂料或PVC环保壁纸,天然材质壁纸、木纤维壁纸等,不仅装饰美观,且没有毒害产生。另外,2012年最新面世的用碳硅复合材料制成的“维舍墙”将会是未来装饰工程的新方向。维舍墙以活性炭和活性吸附硅酸盐为主材料,通过高温负载混晶二氧化钛在微孔內壁,以其独特的表面处理工艺加工而成。不仅没有任何毒害成分,而且还能够吸附和催化分解室内其它材料排放出的甲醛等有害气体。其超大的表面积可以保证净化效果达15年之久,有效地解决室内甲醛浓度超标而危害人体的问题。

2、新型窗体和密封

当前建筑能量的40%-50%是通过门窗散失的。若采用塑钢、铝合金断桥或钢质复合保温窗,玻璃宜用LOW-E中空玻璃,透光率可达80%,又能把90%以上长波与红外线反射回室内,保温性能比传统窗提高5-8倍。密封材料主要用于中空玻璃、窗户缝隙和金属屋面的密封,这一类装饰材料是经过加工、合成等技术手段对有毒有害物质的积聚和缓慢释放进行了控制,通过控制,这类装饰材料毒性轻微,对人体健康危害度极低。

3、新型保温隔热材料

近年来,国家鼓励发展建筑节能技术,新的《民用建筑节能设计标准》要求新设计的采暖居住建筑的保温性能要比1991年的建筑提高80%。新型保温隔热材料分为无机材料和有机材料,无机材料有不燃、使用温度宽、耐化学腐蚀性好等特点;有机材料有强度高、吸水率较低、不透水性好等优良特点。从目前保温隔热材料的发展看出,它们的的共同特点是轻质、疏松、呈多孔状或纤维状,以其内部不流动的空气来阻隔热传导。

4、新型无机非金属材料

首先,绝缘材料包括:氧化铝、滑石、镁橄榄石质陶瓷、石英玻璃等;其次,光学材料包括:忆铝石榴石激光材料、氧化铝、氧化忆透明材料和石英系或多组分玻璃的光导纤维等;最后,高温结构陶瓷包括:高温氧化物、碳化物等难熔化合物超硬材料和碳化钦等。与传统无机非金属材料相比,新型无机非金属材料具有性质稳定,抗腐蚀耐高温等优点,但质脆,经不起热冲击。除具有传统无机非金属材料的优点外,还具有强度高的特性,具有电学、光学特性和生物功能等特征。

光触媒装饰材料的应用

光触媒是一种以纳米级的二氧化钛作为代表,并且具备光催化剂功效的所有光导体节能环保绿色装饰材料。其在建筑装饰中的使用就是在一般的装饰材料上涂抹光触媒,这时材料相当于受到光合作用的效果,让建筑材料发生质变,形成强烈的催化剂和降解功效。这种催化剂能对空气中的有毒气体进行降解和灭菌,并且能将降解细菌中释放的毒素进行分解,对其进行无害化处理,然后再释放在空气中。它最大的优点就是能除臭和抗污,很多装饰材料中都有浓厚刺鼻味道,甚至有臭味,这种光触媒能很好地分解材料中含有的臭味,并且抗污。目前这种节能环保绿色装饰材料在建筑装饰施工中的应用还没有普及,而这种材料具有积极推广的意义,相信在未来一定能在建筑装饰中得到很广泛的应用。

软膜天花在建筑装饰施工中的应用

传统的固体天花的缺陷就是形状固定且需要很多小块进行拼装,而新型的软膜天花则能很好的弥补这种缺陷。软膜天花能大块施工,并且还能组成优美的平面和立体化形象,体现装饰的艺术价值,让人们居住舒适的同时得到精神上的满足和享受,体现人们高品位和高层次的审美观。它在建筑装饰中的应用具有很大的优势,第一,它具有良好的节能环保功效,主要表现在这种材料表面融合了电影荧幕制作原理,在建筑物表面形成一种凹凸不平的纹理,达到加强室内灯光折射的效果,不仅减少了灯具的安装,且能保证室内光线明亮。第二,这种材料具有很好的隔音效果和声学效果。其主要的制作材料就是PVC,这种原材料具有很好的绝缘性,能降低室内热量的流失,还具有很好的防菌和防水功能,确保室内装饰不退色、审美效果好。在施工过程中,这种材料安装方便、安全性能好。由此可见,这种材料在建筑装饰中的应用具有实际意义和价值。

7、节能护材料的应用

目前,大面积玻璃幕墙仍然是对拥有外部围护结构系统的大型公共建筑的主要形式,因此应尽量选择高透光率、绝缘电阻的玻璃材料,并且合理使用太阳能等新源。如北京南站的主站屋顶采用了大量的太阳能光电板,占整个建筑屋顶采光面积的50%左右,总发电量达320kW。大面积的玻璃采光屋面的应用,可以有效地增加室内采光照明面积,达到节约能源、利用自然光的效果;大面积太阳能光电板的应用,还可以发电供其它电气设备使用,是真正意义的建筑节能材料。目前,在我国所使用的的住宅节能护材料并不多,但也朝着着轻质保温复合方向发展。

三、新型建筑材料的发展趋势

新型环保型建筑材料是建材产品发展的必然趋势。“环保”不仅要考虑地球资源与环境方面的因素,也要保证材料在生产与使用过程中资源和能源的节省。环保型建筑材料的发展应具有以下特征:首先,节约能源、降低能耗。与传统建材相比,新型建材不仅要降低自然资源的消耗和能耗,而且能使大量的工业废弃物得到合理的开发与利用。新型建材不仅不会对人类的生存环境造成污染,而会有益于人体的健康,有助于改善建筑功能。其次,减少二次污染。积极利用可循环使用的建筑材料可以减少垃圾掩埋的压力。建筑物到达使用期限后,其材料应能自然降解或转换,对自然环境具有友好性,符合可持续发展的原则。即节省资源和能源,不生产或不排放污染环境、破坏生态的有害物质,减轻对地球和生态系统的负荷,实现非再生性资源的可循环使用。最后,对现有材料进行新的加工处理。环保型建筑材料的发展在于新材料的运用,而新材料的运用主要是对一些材料进行新的技术处理,提高其强度和抗毁坏度,以达到作为建筑材料的要求。新材料的运用和发展,扩充了绿色建材的使用范围。

结束语

建筑材料的环保节能是落实可持续发展重要国策和科学发展观的重要政策。建材的环保节能不仅是一个经济问题,更重要的是一个国家发展的战略性问题。政府、媒体都有责任与义务去引导消费者,只有这样我国环保节能型建筑的发展之路才能更加开阔。建设行政主管部门应强化监管力度,让环保节能工作得到贯彻落实,使建筑真正达到降低能耗、节省开支、节约资源和环境友好的目的。

参考文献

[1]张峰。新型节能型建筑材料的应用现状及趋势分析[J]. 商品与质量。 2010(S4)

[2]焦民顺。谈新型环保型节能材料的发展及应用[J]. 山西建筑。 2009(10)

[3]张松。浅谈我国建筑设计中节能材料的应用川。价值工程。2010(l2).

热门标签